Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Multiple Peptide Synthesis Methods and Their Applications. New Synthetic Methods (87)

Identifieur interne : 004813 ( Main/Exploration ); précédent : 004812; suivant : 004814

Multiple Peptide Synthesis Methods and Their Applications. New Synthetic Methods (87)

Auteurs : Günther Jung [Allemagne] ; Annette G. Beck-Sickinger [Allemagne]

Source :

RBID : ISTEX:D0E76554EAE253D12394B5085D8767722C1AD64A

English descriptors

Abstract

Rapid developments in the biotechnology of new proteins, as well as advances in immunology and the development of pharmaceuticals based on inhibitors and antagonists, have led to immense demands for synthetic peptides. Simultaneous preparation of 100–150 completely different peptides, having chain lengths of up to 20 amino acids can nowadays be achieved using multiple synthesis methods. The yields and qualities of the peptides so obtained are high enough to permit reliable in vivo and in vitro screening for biological activities. Moreover, it is possible to optimize synthetic conditions and to carry out comparative studies on the secondary structures and conformational mapping of proteins. Special multiple synthesis methods facilitate the epitope mapping of larger peptides for diagnostic purposes and for the development of vaccines based on a few hundreds of free or rod‐bound peptides that are useful for immunoassays. Multiple methods of peptide synthesis also enable the preparation of so‐called peptide libraries which could comprise hundreds of thousands of peptides, and by which new perspectives for the screening of lead structures will be opened up. Peptide synthesis using a combination of photolabile protecting groups and photolithographic procedures enables the assembling of peptide libraries on small plates for use in miniature immunoassays. Furthermore, lipopeptide‐antigen conjugates allow both the preparation of peptide‐specific and monoclonal antibodies as well as a complete screening of epitopes of B‐, T‐helper and T‐killer cells. Applications in the areas of AIDS diagnosis, the development of vaccines, and screening for the hormone analogues, demonstrate just some of the possibilities that have been opened up by multiple peptide synthesis methods.
Peptide fishing is a new sport in bioorganic and medicinal chemistry–biologically active peptides are identified from an ocean of peptides of various lengths and constitutions. In the last few years new methods have been developed for the synthesis of such peptide collections. Automation is the next step. For example, in immuno‐analysis the pin method is very important. Minute amounts of peptide are synthesized on rods (a few hundred simultaneously) and incubated with sera containing antibodies for the analysis. In this way the relevant epitopes, that is, the regions to which the antibodies bind, can be precisely determined and mapped.

Url:
DOI: 10.1002/anie.199203673


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Multiple Peptide Synthesis Methods and Their Applications. New Synthetic Methods (87)</title>
<author>
<name sortKey="Jung, Gunther" sort="Jung, Gunther" uniqKey="Jung G" first="Günther" last="Jung">Günther Jung</name>
</author>
<author>
<name sortKey="Beck Ickinger, Annette G" sort="Beck Ickinger, Annette G" uniqKey="Beck Ickinger A" first="Annette G." last="Beck-Sickinger">Annette G. Beck-Sickinger</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:D0E76554EAE253D12394B5085D8767722C1AD64A</idno>
<date when="1992" year="1992">1992</date>
<idno type="doi">10.1002/anie.199203673</idno>
<idno type="url">https://api.istex.fr/ark:/67375/WNG-6GKB042R-C/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002451</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002451</idno>
<idno type="wicri:Area/Istex/Curation">002451</idno>
<idno type="wicri:Area/Istex/Checkpoint">001D95</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">001D95</idno>
<idno type="wicri:doubleKey">0570-0833:1992:Jung G:multiple:peptide:synthesis</idno>
<idno type="wicri:Area/Main/Merge">004885</idno>
<idno type="wicri:Area/Main/Curation">004813</idno>
<idno type="wicri:Area/Main/Exploration">004813</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Multiple Peptide Synthesis Methods and Their Applications. New Synthetic Methods (87)</title>
<author>
<name sortKey="Jung, Gunther" sort="Jung, Gunther" uniqKey="Jung G" first="Günther" last="Jung">Günther Jung</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institut für Organische Chemie der Universität, Auf der Morgenstelle 18</wicri:regionArea>
<wicri:noRegion>Auf der Morgenstelle 18</wicri:noRegion>
<wicri:noRegion>Auf der Morgenstelle 18</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Correspondence address: Institut für Organische Chemie der Universität, Auf der Morgenstelle 18</wicri:regionArea>
<wicri:noRegion>Auf der Morgenstelle 18</wicri:noRegion>
<wicri:noRegion>Auf der Morgenstelle 18</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Beck Ickinger, Annette G" sort="Beck Ickinger, Annette G" uniqKey="Beck Ickinger A" first="Annette G." last="Beck-Sickinger">Annette G. Beck-Sickinger</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institut für Organische Chemie der Universität, Auf der Morgenstelle 18</wicri:regionArea>
<wicri:noRegion>Auf der Morgenstelle 18</wicri:noRegion>
<wicri:noRegion>Auf der Morgenstelle 18</wicri:noRegion>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Angewandte Chemie International Edition in English</title>
<title level="j" type="alt">ANGEWANDTE CHEMIE INTERNATIONAL EDITION IN ENGLISH</title>
<idno type="ISSN">0570-0833</idno>
<idno type="eISSN">1521-3773</idno>
<imprint>
<biblScope unit="vol">31</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="367">367</biblScope>
<biblScope unit="page" to="383">383</biblScope>
<biblScope unit="page-count">17</biblScope>
<publisher>Hüthig & Wepf Verlag</publisher>
<pubPlace>Zug</pubPlace>
<date type="published" when="1992-04">1992-04</date>
</imprint>
<idno type="ISSN">0570-0833</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0570-0833</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Acid</term>
<term>Acrylic acid</term>
<term>Active peptide</term>
<term>Active peptides</term>
<term>Amino</term>
<term>Amino acid</term>
<term>Amino acid derivatives</term>
<term>Amino acid mixtures</term>
<term>Amino acids</term>
<term>Analogue</term>
<term>Analytical procedures</term>
<term>Anchor positions</term>
<term>Angew</term>
<term>Batsberg pedersen</term>
<term>Biochem</term>
<term>Biological activities</term>
<term>Biological activity</term>
<term>Biological test system</term>
<term>Biological tests</term>
<term>Chain lengths</term>
<term>Chem</term>
<term>Circular dichroism measurements</term>
<term>Cleavage</term>
<term>Computer program</term>
<term>Conformational mapping</term>
<term>Corresponding acid</term>
<term>Definite positions</term>
<term>Deprotection</term>
<term>Deres</term>
<term>Different peptides</term>
<term>Elisa</term>
<term>Engl</term>
<term>Epitope</term>
<term>Epitope mapping</term>
<term>Escom</term>
<term>First time</term>
<term>Flow rate</term>
<term>Flow synthesizer</term>
<term>Fmoc</term>
<term>Fmoc strategy</term>
<term>Free peptides</term>
<term>Gruyter</term>
<term>High performance</term>
<term>Hormone analogues</term>
<term>Houghten</term>
<term>Hplc</term>
<term>Individual peptides</term>
<term>Instrumental analysis</term>
<term>Jung</term>
<term>Killer cells</term>
<term>Large number</term>
<term>Larger peptides</term>
<term>Leiden</term>
<term>Many peptides</term>
<term>Mass spectrometry</term>
<term>Merrifield</term>
<term>Metzger</term>
<term>Modern methods</term>
<term>Molecular level</term>
<term>Monoclonal</term>
<term>Monoclonal antibodies</term>
<term>Monoclonal antibody</term>
<term>Multiple cleavage</term>
<term>Multiple methods</term>
<term>Multiple peptide analysis</term>
<term>Multiple peptide synthesis</term>
<term>Multiple peptide synthesis methods</term>
<term>Multiple synthesis</term>
<term>Multiple synthesis methods</term>
<term>Novel lantibiotics</term>
<term>Organic chemistry</term>
<term>Paper disks</term>
<term>Parallel synthesis</term>
<term>Pept</term>
<term>Peptide</term>
<term>Peptide chemist</term>
<term>Peptide chemistry</term>
<term>Peptide libraries</term>
<term>Peptide mixture</term>
<term>Peptide mixtures</term>
<term>Peptide numbers</term>
<term>Peptide sequences</term>
<term>Peptide solutions</term>
<term>Peptide synthesis</term>
<term>Personal computer</term>
<term>Phage</term>
<term>Pipetting</term>
<term>Pipetting robots</term>
<term>Pmol</term>
<term>Polyclonal sera</term>
<term>Polyethylene film</term>
<term>Polyethylene rods</term>
<term>Polymer</term>
<term>Polymeric</term>
<term>Polymeric beads</term>
<term>Polymeric support</term>
<term>Positive sera</term>
<term>Proc</term>
<term>Protein chemistry</term>
<term>Protein research foundation</term>
<term>Protein segments</term>
<term>Rammensee</term>
<term>Rapid development</term>
<term>Reaction vessel</term>
<term>Reaction vessels</term>
<term>Reagent</term>
<term>Receptor</term>
<term>Robot</term>
<term>Schematic representation</term>
<term>Schnorrenberg</term>
<term>Secondary structure</term>
<term>Several positions</term>
<term>Short peptides</term>
<term>Short time</term>
<term>Simultaneous preparation</term>
<term>Small amounts</term>
<term>Solid phase peptide synthesis</term>
<term>Solid phase synthesis</term>
<term>Soluble receptors screening</term>
<term>Such peptides</term>
<term>Suction</term>
<term>Symp</term>
<term>Synthesis</term>
<term>Synthesizer</term>
<term>Synthetic cycle</term>
<term>Synthetic peptides</term>
<term>Tbtu</term>
<term>Tbtu tetrafluoroborate</term>
<term>Tetrahedron lett</term>
<term>Trifluoroacetic acid</term>
<term>Tubingen</term>
<term>Universitat tubingen</term>
<term>Vaccine</term>
<term>Variable positions</term>
<term>Wiesmiiller</term>
<term>Zinsser smps</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Rapid developments in the biotechnology of new proteins, as well as advances in immunology and the development of pharmaceuticals based on inhibitors and antagonists, have led to immense demands for synthetic peptides. Simultaneous preparation of 100–150 completely different peptides, having chain lengths of up to 20 amino acids can nowadays be achieved using multiple synthesis methods. The yields and qualities of the peptides so obtained are high enough to permit reliable in vivo and in vitro screening for biological activities. Moreover, it is possible to optimize synthetic conditions and to carry out comparative studies on the secondary structures and conformational mapping of proteins. Special multiple synthesis methods facilitate the epitope mapping of larger peptides for diagnostic purposes and for the development of vaccines based on a few hundreds of free or rod‐bound peptides that are useful for immunoassays. Multiple methods of peptide synthesis also enable the preparation of so‐called peptide libraries which could comprise hundreds of thousands of peptides, and by which new perspectives for the screening of lead structures will be opened up. Peptide synthesis using a combination of photolabile protecting groups and photolithographic procedures enables the assembling of peptide libraries on small plates for use in miniature immunoassays. Furthermore, lipopeptide‐antigen conjugates allow both the preparation of peptide‐specific and monoclonal antibodies as well as a complete screening of epitopes of B‐, T‐helper and T‐killer cells. Applications in the areas of AIDS diagnosis, the development of vaccines, and screening for the hormone analogues, demonstrate just some of the possibilities that have been opened up by multiple peptide synthesis methods.</div>
<div type="abstract" xml:lang="en">Peptide fishing is a new sport in bioorganic and medicinal chemistry–biologically active peptides are identified from an ocean of peptides of various lengths and constitutions. In the last few years new methods have been developed for the synthesis of such peptide collections. Automation is the next step. For example, in immuno‐analysis the pin method is very important. Minute amounts of peptide are synthesized on rods (a few hundred simultaneously) and incubated with sera containing antibodies for the analysis. In this way the relevant epitopes, that is, the regions to which the antibodies bind, can be precisely determined and mapped.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
</list>
<tree>
<country name="Allemagne">
<noRegion>
<name sortKey="Jung, Gunther" sort="Jung, Gunther" uniqKey="Jung G" first="Günther" last="Jung">Günther Jung</name>
</noRegion>
<name sortKey="Beck Ickinger, Annette G" sort="Beck Ickinger, Annette G" uniqKey="Beck Ickinger A" first="Annette G." last="Beck-Sickinger">Annette G. Beck-Sickinger</name>
<name sortKey="Jung, Gunther" sort="Jung, Gunther" uniqKey="Jung G" first="Günther" last="Jung">Günther Jung</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004813 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 004813 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:D0E76554EAE253D12394B5085D8767722C1AD64A
   |texte=   Multiple Peptide Synthesis Methods and Their Applications. New Synthetic Methods (87)
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021